Compare commits

...

2 Commits

Author SHA1 Message Date
d2d3080692 Keypad mapping 2024-09-23 20:31:51 +02:00
53615fcf6a Create keypad handler 2024-09-22 17:58:23 +02:00
2 changed files with 415 additions and 105 deletions

351
src/keypad.rs Normal file
View File

@ -0,0 +1,351 @@
#[doc(hidden)]
pub extern crate core as _core;
use core::cell::RefCell;
use esp_hal::gpio::{Input, InputPin, OutputOpenDrain, OutputPin};
/// A virtual `embedded-hal` input pin representing one key of the keypad.
///
/// A `KeypadInput` stores references to one row and one column pin. When you
/// read from it with `.is_low()` or `.is_high()`, it secretly sets the column
/// pin low, reads from the row pin, and then sets the column pin high again.
/// The column pin is actually stored inside a `RefCell` in the keypad struct,
/// so that multiple `KeypadInput`s can mutate the column pin's state as needed,
/// even though they only have a shared/immutable reference to it.
///
/// This has several implications.
///
/// 1) Reading from `KeypadInput`s is not reentrant. If we were in the middle
/// of reading a `KeypadInput` and entered an interrupt service routine that
/// read any `KeypadInput` of the same keypad, we might read an incorrect value
/// or cause a `panic`.
///
/// 2) Reading from a `KeypadInput` is slower than reading from a real input
/// pin, because it needs to change the output pin state twice for every read.
pub struct KeypadInput<'a> {
row: &'a RefCell<Input<'a, InputPin>>,
col: &'a RefCell<OutputOpenDrain<'a, dyn InputPin + OutputPin>>,
}
impl<'a, E> KeypadInput<'a, E> {
/// Create a new `KeypadInput`. For use in macros.
pub fn new(row: &'a dyn InputPin, col: &'a RefCell<dyn OutputPin>) -> Self {
Self { row, col }
}
}
impl<'a, E> InputPin for KeypadInput<'a, E> {
type Error = E;
/// Read the state of the key at this row and column. Not reentrant.
fn is_high(&self) -> Result<bool, E> {
Ok(!self.is_low()?)
}
/// Read the state of the key at this row and column. Not reentrant.
fn is_low(&self) -> Result<bool, E> {
self.col.borrow_mut().set_low()?;
let out = self.row.is_low()?;
self.col.borrow_mut().set_high()?;
Ok(out)
}
}
/// Define a new struct representing your keypad matrix circuit.
///
/// Every pin has a unique type, depending on its pin number and its current
/// mode. This struct is where you specify which pin types will be used in the
/// rows and columns of the keypad matrix. All the row pins must implement the
/// `InputPin` trait, and the column pins must implement the `OutputPin` trait.
/// The associated `Error` type of the `InputPin` and `OutputPin` traits must be
/// the same for every row and column pin, and you must specify it after your
/// struct name with `<Error = ...>`
///
/// You can specify the visibility of the struct (eg. `pub`) as usual, and add
/// doc comments using the `#[doc="..."]` attribute.
///
/// Don't access or modify the struct's fields directly. Instead, use
/// the methods implemented by this macro, documented here:
/// [`example_generated::ExampleKeypad`](./example_generated/struct.ExampleKeypad.html)
///
/// # Example
///
/// ```
/// # #![cfg_attr(docs_rs_workaround, feature(macro_vis_matcher))]
/// #[macro_use]
/// extern crate keypad;
///
/// use keypad::mock_hal::{self, Input, OpenDrain, Output, PullUp};
/// use core::convert::Infallible;
///
/// keypad_struct! {
/// #[doc="My super-special keypad."]
/// pub struct ExampleKeypad<Error = Infallible> {
/// rows: (
/// mock_hal::gpioa::PA0<Input<PullUp>>,
/// mock_hal::gpioa::PA1<Input<PullUp>>,
/// mock_hal::gpioa::PA2<Input<PullUp>>,
/// mock_hal::gpioa::PA3<Input<PullUp>>,
/// ),
/// columns: (
/// mock_hal::gpioa::PA4<Output<OpenDrain>>,
/// mock_hal::gpioa::PA5<Output<OpenDrain>>,
/// mock_hal::gpioa::PA6<Output<OpenDrain>>,
/// mock_hal::gpioa::PA7<Output<OpenDrain>>,
/// mock_hal::gpioa::PA8<Output<OpenDrain>>,
/// ),
/// }
/// }
///
/// # fn main() {
/// # }
/// ```
///
/// # Safety
///
/// This macro uses `unsafe` to create an array with uninitialized memory, which
/// is then immediately initialized in a loop. This is fine as long as there is
/// not a bug in how the macro calculates the dimensions of the array.
// There are two reasons why this big, scary macro is necessary:
//
// 1) Every single pin has a unique type, and we don't know which pins will be used. We know that
// they all implement a certain trait, but that doesn't help much because it doesn't tell us the
// size of the type, so we can't directly stick it into the struct. If we could use dynamic
// allocation, we could just store pins on the heap as boxed trait objects. But this crate needs
// to work on embedded platforms without an allocator! So, we use this macro to generate a
// struct containing the exact, concrete pin types the user provides.
//
// 2) We don't know how many pins there will be, because the keypad could have any number of rows
// and columns. That makes it hard to implement `decompose()`, which needs to iterate over the
// row and column pins. We can't store pins in arrays because they all have unique types, but we
// can store them in tuples instead. The problem is that you can't actually iterate over a tuple,
// and even indexing into arbitrary fields of a tuple using a macro is stupidly hard. The best
// approach I could come up with was to repeatedly destructure the tuple with different patterns,
// like this:
//
// let tuple = (0, 1, 2);
// let array = [
// {
// let (ref x, ..) = tuple;
// x
// },
// {
// let (_, ref x, ..) = tuple;
// x
// },
// {
// let (_, _, ref x, ..) = tuple;
// x
// },
// ];
// for reference in array.into_iter() {
// // ...
// }
//
// So that's how the `keypad_struct!()` macro iterates over tuples of pins. It counts the length of
// the tuple (also tricky!), creates patterns with increasing numbers of underscores, and uses them
// to build up a temporary array of references that it can iterate over. Luckily this code only
// needs to be run once, in `decompose()`, and not every time we read from a pin.
//
// I can't think of any simpler design that still has a convenient API and allows the keypad struct
// to own the row and column pins. If they weren't owned, the crate would be less convenient to use
// but could provide a generic Keypad struct like this:
//
// pub struct Keypad<'a, E, const R: usize, const C: usize> {
// rows: [&'a dyn InputPin<Error = E>; R],
// columns: [&'a RefCell<dyn OutputPin<Error = E>>; C],
// }
//
#[macro_export]
macro_rules! keypad_struct {
(
$(#[$attributes:meta])* $visibility:vis struct $struct_name:ident {
rows: ( $($row_type:ty),* $(,)* ),
columns: ( $($col_type:ty),* $(,)* ),
}
) => {
compile_error!("You must specify the associated `Error` type of the row and column pins'\
`InputPin` and `OutputPin` traits.\n\
Example: `struct MyStruct <Error = Infallible> { ... }`");
};
(
$(#[$attributes:meta])* $visibility:vis struct $struct_name:ident <Error = $error_type:ty> {
rows: ( $($row_type:ty),* $(,)* ),
columns: ( $($col_type:ty),* $(,)* ),
}
) => {
$(#[$attributes])* $visibility struct $struct_name {
/// The input pins used for reading each row.
rows: ($($row_type),* ,),
/// The output pins used for scanning through each column. They're
/// wrapped in RefCells so that we can change their state even if we
/// only have shared/immutable reference to them. This lets us
/// actively scan the matrix when reading the state of a virtual
/// `KeypadInput` pin.
columns: ($($crate::_core::cell::RefCell<$col_type>),* ,),
}
impl $struct_name {
/// Get a 2d array of embedded-hal input pins, each representing one
/// key in the keypad matrix.
#[allow(dead_code)]
$visibility fn decompose<'a>(&'a self) ->
keypad_struct!(
@array2d_type
$crate::KeypadInput<'a, $error_type>,
($($row_type),*)
($($crate::_core::cell::RefCell<$col_type>),*)
)
{
let rows: [
&dyn $crate::embedded_hal::digital::v2::InputPin<Error = $error_type>;
keypad_struct!(@count $($row_type)*)
]
= keypad_struct!(@tuple self.rows, ($($row_type),*));
let columns: [
&$crate::_core::cell::RefCell<dyn $crate::embedded_hal::digital::v2::OutputPin<Error = $error_type>>;
keypad_struct!(@count $($col_type)*)
]
= keypad_struct!(@tuple self.columns, ($($col_type),*));
// Create an uninitialized 2d array of MaybeUninit.
let mut out: keypad_struct!(
@array2d_type
$crate::_core::mem::MaybeUninit<$crate::KeypadInput<'a, $error_type>>,
($($row_type),*)
($($crate::_core::cell::RefCell<$col_type>),*)
) = unsafe {
$crate::_core::mem::MaybeUninit::uninit().assume_init()
};
// Initialize each element with a KeypadInput struct
for r in 0..rows.len() {
for c in 0..columns.len() {
out[r][c].write($crate::KeypadInput::new(rows[r], columns[c]));
}
}
// All elements are initialized. Transmute the array to the initialized type.
unsafe { $crate::_core::mem::transmute::<_, _>(out) }
}
/// Give back ownership of the row and column pins.
///
/// This consumes the keypad struct. All references to its virtual
/// `KeypadInput` pins must have gone out of scope before you try to
/// call `.release()`, or it will fail to compile.
///
/// The column pins will be returned inside of `RefCell`s (because
/// macros are hard). You can use `.into_inner()` to extract
/// each column pin from its `RefCell`.
#[allow(dead_code)]
$visibility fn release(self) ->(($($row_type),* ,), ($($crate::_core::cell::RefCell<$col_type>),* ,)) {
(self.rows, self.columns)
}
}
};
(@array2d_type $element_type:ty, ($($row:ty),*) ($($col:ty),*) ) => {
[keypad_struct!(@array1d_type $element_type, ($($col),*)) ; keypad_struct!(@count $($row)*)]
};
(@array1d_type $element_type:ty, ($($col:ty),*)) => {
[$element_type ; keypad_struct!(@count $($col)*)]
};
(@count $($token_trees:tt)*) => {
0usize $(+ keypad_struct!(@replace $token_trees 1usize))*
};
(@replace $_t:tt $sub:expr) => {
$sub
};
(@underscore $unused:tt) => {
_
};
(@destructure_ref $tuple:expr, ($($repeat_n:ty),*)) => {
{
let (
$(keypad_struct!(@underscore $repeat_n),)*
ref nth, ..) = $tuple;
nth
}
};
(@tuple_helper $tuple:expr, ($head:ty), ($($result:expr),* $(,)*)) => {
[
keypad_struct!(@destructure_ref $tuple, ()),
$($result),*
]
};
(@tuple_helper $tuple:expr, ($head:ty $(,$repeats:ty)* $(,)*), ($($result:expr),* $(,)*)) => {
keypad_struct!(
@tuple_helper $tuple, ($($repeats),*),
(
keypad_struct!(@destructure_ref $tuple, ($($repeats),*)),
$($result),*
)
)
};
(@tuple $tuple:expr, ($($repeats:ty),*)) => {
keypad_struct!(@tuple_helper $tuple, ($($repeats),*) , ())
};
}
/// Create an instance of the struct you defined with the `keypad_struct!()` macro..
///
/// The pin numbers and modes will need to match the ones you specified with `keypad_struct!()`.
///
/// ```
/// # #![cfg_attr(docs_rs_workaround, feature(macro_vis_matcher))]
/// # #[macro_use]
/// # extern crate keypad;
/// # use core::convert::Infallible;
/// # use keypad::mock_hal::{self, Input, OpenDrain, Output, PullUp};
/// # use keypad::mock_hal::{GpioExt, GPIOA};
/// # keypad_struct!{
/// # pub struct ExampleKeypad<Error = Infallible>{
/// # rows: (
/// # mock_hal::gpioa::PA0<Input<PullUp>>,
/// # mock_hal::gpioa::PA1<Input<PullUp>>,
/// # mock_hal::gpioa::PA2<Input<PullUp>>,
/// # mock_hal::gpioa::PA3<Input<PullUp>>,
/// # ),
/// # columns: (
/// # mock_hal::gpioa::PA4<Output<OpenDrain>>,
/// # mock_hal::gpioa::PA5<Output<OpenDrain>>,
/// # mock_hal::gpioa::PA6<Output<OpenDrain>>,
/// # mock_hal::gpioa::PA7<Output<OpenDrain>>,
/// # mock_hal::gpioa::PA8<Output<OpenDrain>>,
/// # ),
/// # }
/// # }
/// # fn main() {
/// let pins = GPIOA::split();
///
/// let keypad = keypad_new!(ExampleKeypad {
/// rows: (
/// pins.pa0.into_pull_up_input(),
/// pins.pa1.into_pull_up_input(),
/// pins.pa2.into_pull_up_input(),
/// pins.pa3.into_pull_up_input(),
/// ),
/// columns: (
/// pins.pa4.into_open_drain_output(),
/// pins.pa5.into_open_drain_output(),
/// pins.pa6.into_open_drain_output(),
/// pins.pa7.into_open_drain_output(),
/// pins.pa8.into_open_drain_output(),
/// ),
/// });
/// # }
/// ```
#[macro_export]
macro_rules! keypad_new {
( $struct_name:ident {
rows: ( $($row_val:expr),* $(,)* ),
columns: ( $($col_val:expr),* $(,)* ),
}) => {
$struct_name {
rows: ($($row_val),* ,),
columns: ($($crate::_core::cell::RefCell::new($col_val)),* ,),
}
};
}

View File

@ -16,7 +16,7 @@ use esp_hal::{
delay::Delay, delay::Delay,
gpio::{ gpio::{
Gpio10, Gpio2, Gpio3, Gpio4, Gpio5, Gpio6, Gpio7, Gpio8, Input, InputPin, Io, Level, Gpio10, Gpio2, Gpio3, Gpio4, Gpio5, Gpio6, Gpio7, Gpio8, Input, InputPin, Io, Level,
Output, OutputPin, Pull, NO_PIN, Output, OutputOpenDrain, OutputPin, Pull, NO_PIN,
}, },
peripherals::Peripherals, peripherals::Peripherals,
prelude::*, prelude::*,
@ -96,25 +96,22 @@ fn main() -> ! {
log::info!("Printing welcome msg (DONE)"); log::info!("Printing welcome msg (DONE)");
log::info!("Full update..."); log::info!("Full update...");
let _ = driver.full_update(&display); // let _ = driver.full_update(&display);
log::info!("Full update (DONE)"); log::info!("Full update (DONE)");
log::info!("Sleeping for 0.5s..."); log::info!("Sleeping for 0.5s...");
delay.delay(500.millis()); // delay.delay(500.millis());
let mut kbd = Keyboard { let mut kbd = Keypad {
rows: Rows { i1: Input::new(io.pins.gpio2, Pull::Up),
gpio2: Input::new(io.pins.gpio2, Pull::Up), i2: Input::new(io.pins.gpio3, Pull::Up),
gpio3: Input::new(io.pins.gpio3, Pull::Up), i3: Input::new(io.pins.gpio4, Pull::Up),
gpio4: Input::new(io.pins.gpio4, Pull::Up), i4: Input::new(io.pins.gpio5, Pull::Up),
gpio5: Input::new(io.pins.gpio5, Pull::Up), //---------------------------
}, o1: OutputOpenDrain::new(io.pins.gpio6, Level::Low, Pull::Up),
cols: Cols { o2: OutputOpenDrain::new(io.pins.gpio7, Level::Low, Pull::Up),
gpio6: Output::new(io.pins.gpio6, Level::Low), o3: OutputOpenDrain::new(io.pins.gpio8, Level::Low, Pull::Up),
gpio7: Output::new(io.pins.gpio7, Level::Low), o4: OutputOpenDrain::new(io.pins.gpio10, Level::Low, Pull::Up),
gpio8: Output::new(io.pins.gpio8, Level::Low),
gpio10: Output::new(io.pins.gpio10, Level::Low),
},
}; };
let mut ctx = Context { let mut ctx = Context {
@ -125,7 +122,7 @@ fn main() -> ! {
display.clear(TriColor::White); display.clear(TriColor::White);
app.draw(&mut display); app.draw(&mut display);
driver.full_update(&display).unwrap(); // driver.full_update(&display).unwrap();
driver.sleep().unwrap(); driver.sleep().unwrap();
loop { loop {
@ -180,100 +177,62 @@ pub enum Button {
pub struct Context { pub struct Context {
button_pressed: Option<Button>, button_pressed: Option<Button>,
} }
struct Keypad<'d> {
struct Rows<'d> { o1: OutputOpenDrain<'d, Gpio6>, //
gpio2: Input<'d, Gpio2>, // o2: OutputOpenDrain<'d, Gpio7>, //
gpio3: Input<'d, Gpio3>, // o3: OutputOpenDrain<'d, Gpio8>, //
gpio4: Input<'d, Gpio4>, // o4: OutputOpenDrain<'d, Gpio10>, //
gpio5: Input<'d, Gpio5>, // // --------------------------------------
i1: Input<'d, Gpio2>, //
i2: Input<'d, Gpio3>, //
i3: Input<'d, Gpio4>, //
i4: Input<'d, Gpio5>, //
} }
struct Cols<'d> { impl<'d> Keypad<'d> {
gpio6: Output<'d, Gpio6>, //
gpio7: Output<'d, Gpio7>, //
gpio8: Output<'d, Gpio8>, //
gpio10: Output<'d, Gpio10>, //
}
struct Keyboard<'d> {
rows: Rows<'d>,
cols: Cols<'d>,
}
impl<'d> Keyboard<'d> {
pub fn pressed(&mut self) -> Option<Button> { pub fn pressed(&mut self) -> Option<Button> {
self.cols.gpio6.set_high(); let res: [[bool; 4]; 4] = core::array::from_fn(|x| {
let col1 = [ core::array::from_fn(|y| {
self.rows.gpio2.is_high(), self.set_high(x as u8);
self.rows.gpio3.is_high(), let v = self.is_low(y as u8);
self.rows.gpio4.is_high(), self.set_low(x as u8);
self.rows.gpio5.is_high(), v
]; })
self.cols.gpio6.set_high(); });
self.cols.gpio7.set_high(); if res.iter().any(|a| a.iter().any(|b| !b)) {
let col2 = [ println!("***************************************");
self.rows.gpio2.is_high(), for a in res {
self.rows.gpio3.is_high(), println!("col {a:?}");
self.rows.gpio4.is_high(),
self.rows.gpio5.is_high(),
];
self.cols.gpio7.set_low();
self.cols.gpio8.set_high();
let col3 = [
self.rows.gpio2.is_high(),
self.rows.gpio3.is_high(),
self.rows.gpio4.is_high(),
self.rows.gpio5.is_high(),
];
self.cols.gpio8.set_low();
self.cols.gpio10.set_high();
let col4 = [
self.rows.gpio2.is_high(),
self.rows.gpio3.is_high(),
self.rows.gpio4.is_high(),
self.rows.gpio5.is_high(),
];
self.cols.gpio10.set_low();
println!("***************************************");
println!("col1 {col1:?}");
println!("col2 {col2:?}");
println!("col3 {col3:?}");
println!("col4 {col4:?}");
None
}
}
/*
struct Keyboard<'d>(
[(
core::cell::RefCell<dyn InputPin + 'd>,
core::cell::RefCell<dyn OutputPin + 'd>,
); 16],
);
impl<'d> Keyboard<'d> {
pub fn new(cols: [impl InputPin; 4], rows: [impl OutputPin; 4]) {
core::array::from_fn(|x| )
for (x, c) in cols.into_iter().enumerate() {
for (y, r) in rows.into_iter().enumerate() {
;
} }
} }
None
} }
} fn set_high(&mut self, o: u8) {
match o {
trait KeyboardInput<'d> { 0 => self.o1.set_high(),
fn is_low(&mut self) -> bool; 1 => self.o2.set_high(),
fn is_high(&mut self) -> bool { 2 => self.o3.set_high(),
!self.is_low() 3 => self.o4.set_high(),
_ => {}
};
}
fn set_low(&mut self, o: u8) {
match o {
0 => self.o1.set_low(),
1 => self.o2.set_low(),
2 => self.o3.set_low(),
3 => self.o4.set_low(),
_ => {}
};
}
fn is_low(&mut self, o: u8) -> bool {
match o {
0 => self.i1.is_low(),
1 => self.i2.is_low(),
2 => self.i3.is_low(),
3 => self.i4.is_low(),
_ => false,
}
} }
} }
impl<'d, C: InputPin, R: OutputPin> KeyboardInput<'d> for (Input<'d, C>, Output<'d, R>) {
fn is_low(&mut self) -> bool {
self.1.set_low();
let s = self.0.is_low();
self.1.set_high();
s
}
}*/